
Originally distributed at the SMTA International Conference on Soldering and Reliability Toronto, Ontario, Canada; May 15-18, 2012

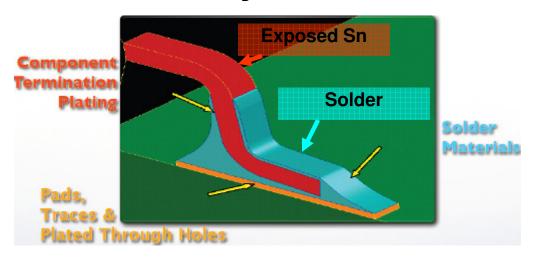
SERDP Tin Whisker Testing and Modeling: Low Stress Conditions

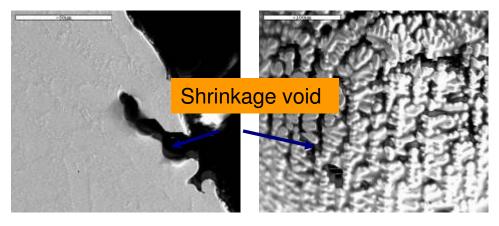
Stephan Meschter*, Polina Snugovsky#, Jeff Kennedy, Zohreh Bagheri# and Eva Kosiba#
*BAE Systems Endicott, NY, USA
#Celestica, Toronto, Ontario Canada
stephan.j.meschter@baesystems.com

SERDP Lead-Free Projects

- Strategic Environmental Research and Development Program (http://www.serdp.org/)
 - □ SERDP performs research related to environmental challenges faced by the US Department of Defense
- WP-1751, J. Nielsen, The Role of Trace Elements in Tin Whisker Growth
- WP-1752, P. Borgesen, Microstructurally Adaptive Constitutive Models for Lead Free Solder Joints
- WP-1753, S. Meschter, Tin-Whisker Testing and Modeling
- WP-1754, E. Hoffman, Stress State and Metallic Whisker Growth
- WP-2212, D. Hillman, Tin Whiskers Inorganic Coatings Evaluation
- WP-2213, S. Meschter, Composite coating for whisker mitigation

SERDP Project WP1753 Technical objective

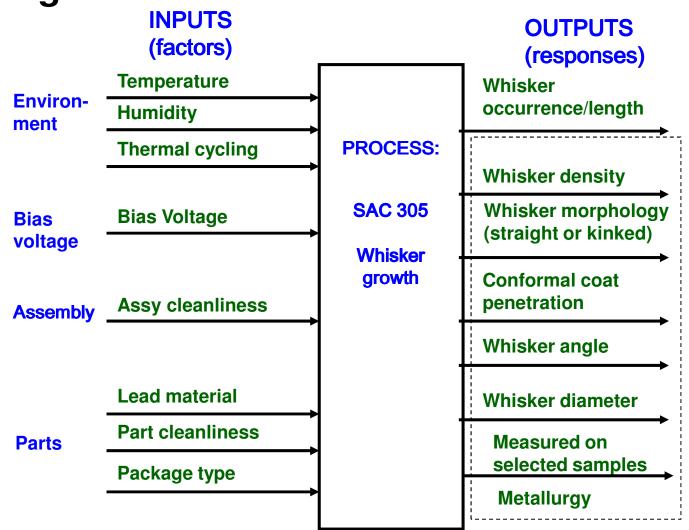

- Perform systematic tin-whisker testing to improve the reliability of military electronics
 - Assess combinations of whisker growth variables
 - Design, manufacturing, and environments
 - Evaluate conformal coating for mitigation effectiveness
 - Provide metallurgical analysis of tin whiskers for nucleation and growth-mechanism formulation
- Provide an analytical framework to assess functional risk of whiskers to military electronic systems
 - System function risk assessment through integration of whisker distribution data and circuit details



Whiskers in typical Pb-free solder joints

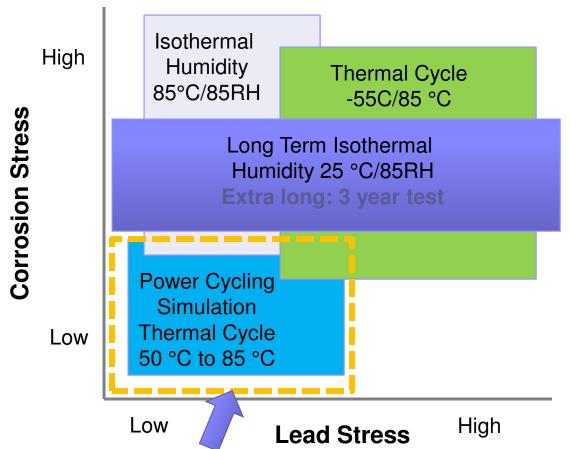
- No lead(Pb) in electroplated Sn finish – propensity for whisker formation
- Poorer wetting more exposed Sn plating for same type of components
- More aggressive fluxes to improve wetting – ionic contamination, oxidation and corrosion promoting whisker growth
- Sn-Ag-Cu solder what about whisker growth?
 - Rough surface trapped contamination, difficult to clean – higher propensity to whisker

cross-section


top view

Lead-Free joint roughness, SEM

Testing overview



Test matrix includes variable combinations expected to yield low, medium and high whisker propensities in order to evaluate conformal coat mitigation 5

Variable stress whisker testing

Lead IMC stress:

Higher → with intermetallic growth
Higher → with long test duration

Montoring IMC thickness on both
board and leads during test

Lead thermal cycle CTE stress:

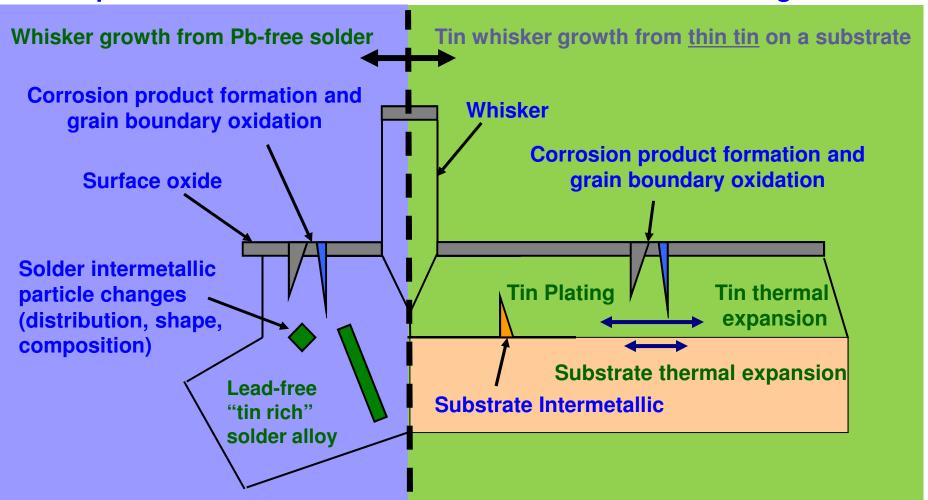
Higher → with larger delta T

Higher → with tin on alloy 42

Lower → with tin on copper

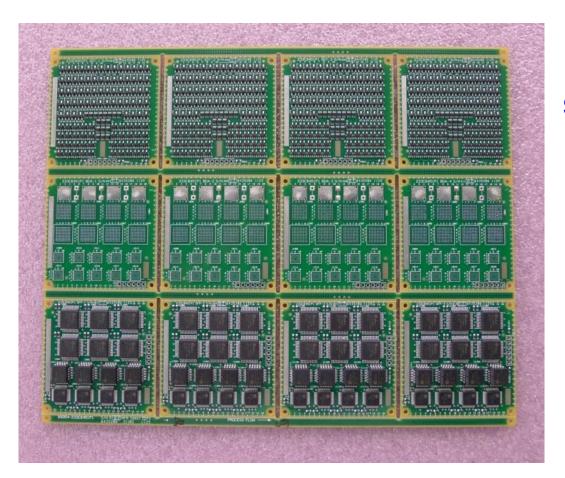
Current work

Power Cycling


Simulation

Evaluating a broad range of stress combinations suspected to promote whisker growth

Factors contributing to whisker growth


Compressive stress in tin is believed to cause to whisker growth.

Test vehicle panel

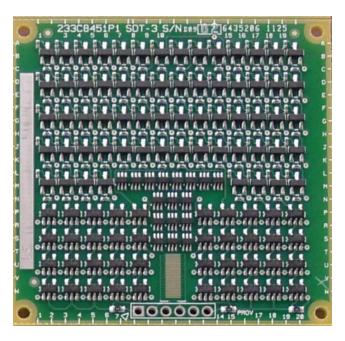
24.7 x 20 cm 0.236 mm thick panel

Board Types

SOT (Small outline transistor)

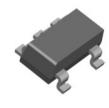
Current work

BGA (Ball grid array)


QFP/PLCC (Quad flat pack/ Plastic leaded chip carrier)

Test Vehicle

6 cm square Can be inspected entirely in the SEM

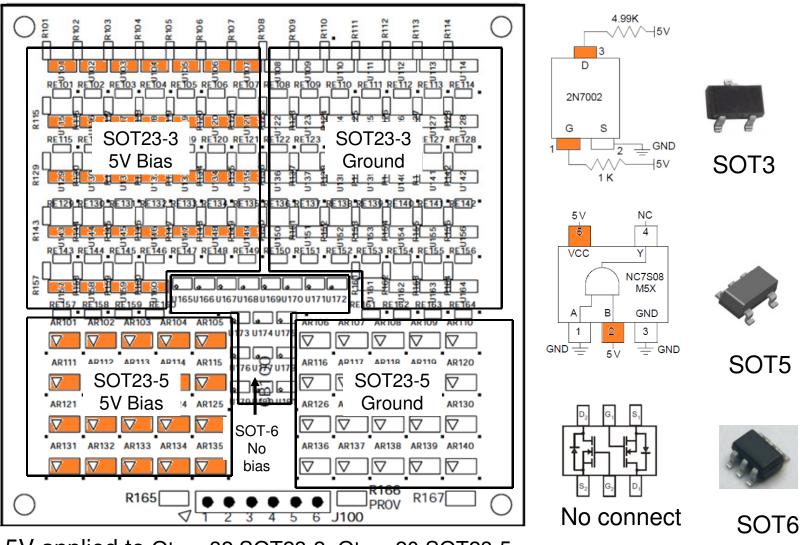

Designation Part No. Package	Lead Frame Material	Plating Material	Number of Leads/ number of parts
SOT3 2N7002 SOT23-3	Alloy 42	Matte Sn	3/64
SOT5 NC7S08M5X SOT23-5	Cu194	Matte Sn	5/40
SOT6 2N7002DW-7-F SOT363	Alloy 42	Matte Sn	6/17

Alloy 42	Fe-42Ni
C194	Cu2.1-2.6Fe-0.015-0.15P-0.05-0.2Zn

Immersion tin finish printed wire board

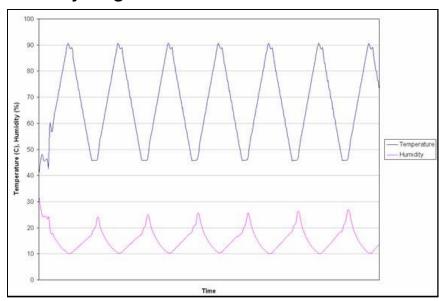
SOT3

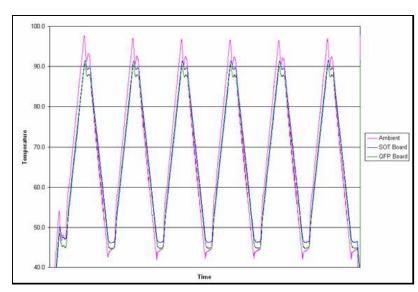
SOT5



SOT6

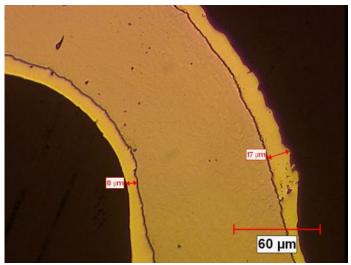
Electrical Bias

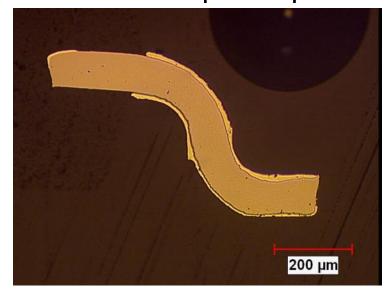


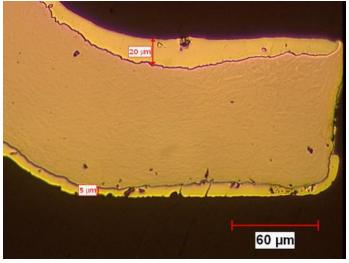

5V applied to Qty = 32 SOT23-2, Qty = 20 SOT23-5

- 50 °C ambient on-off simulation
- Chamber air determines board temperature
 - □ Constant voltage applied
 - □ 31 mA board current draw @ 5V = 155 mW
 - □ Low power yields small temperature gradients
- Low range thermal cycling
 - □ Target 50 to 85 °C, 35 °C
 - ☐ Measured 48 °C to 88 °C, ΔT=40 °C
- Humidity was recorded
 - □ Cycling 25%RH at 88 °C to 10%RH at 48 °C

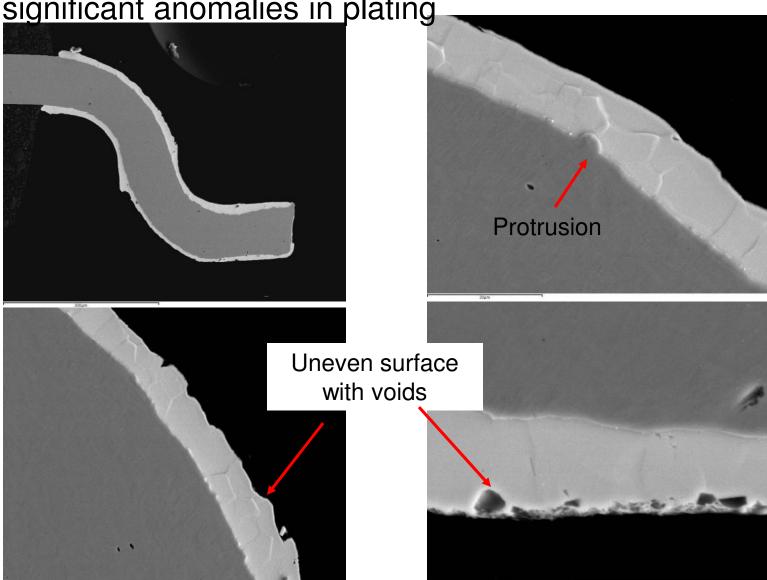
COMPONENTS, AS RECEIVED

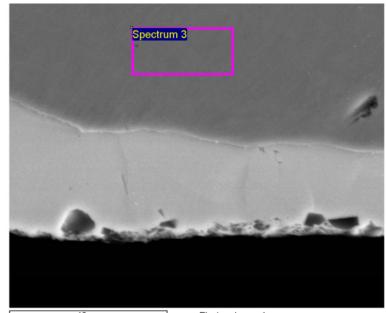


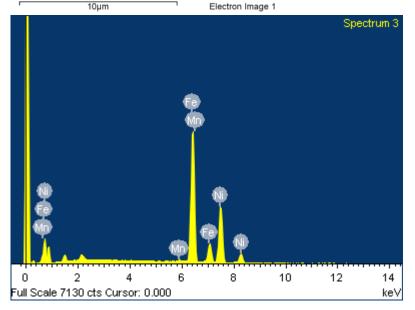

Components, SOT23-3 as received


Sn plating thickness varies from 5 to 20 μm depending on

lead area

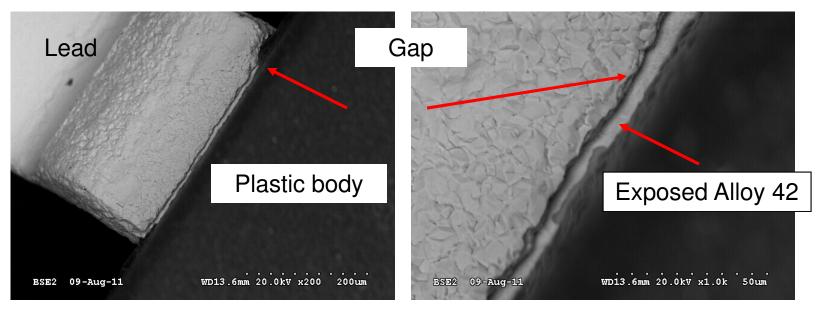


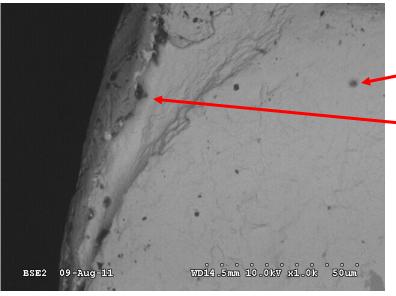



Components, SOT23-3 as received (cont.) SINTA No significant

No significant anomalies in plating

Components, SOT23-3 as received (cont.) SIVITA

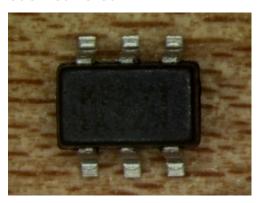


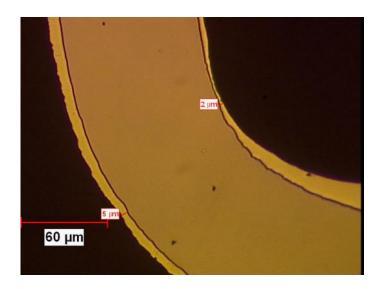


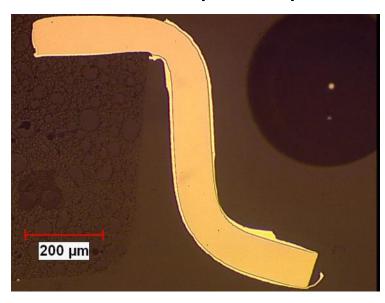
EDX on Alloy 42 Leadframe Material

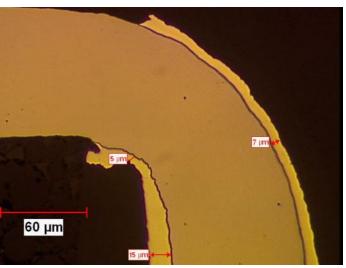
Element	Weight%	Atomic%
Mn K	0.56	0.58
Fe K	59.12	60.30
Ni K	40.33	39.13
Totals	100.00	

Components, SOT23-3 as received (cont.) Surface Mount Technology Association

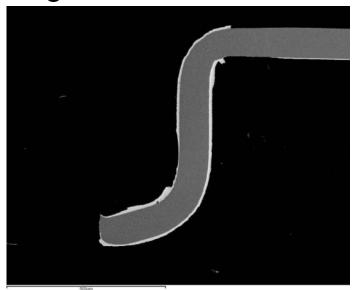

Some Silicon contamination before cleaning

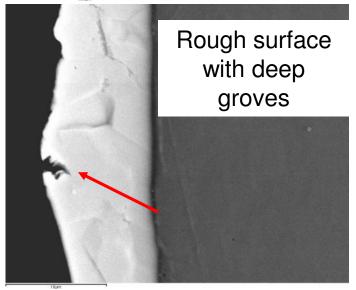


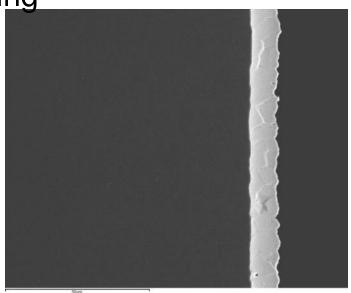


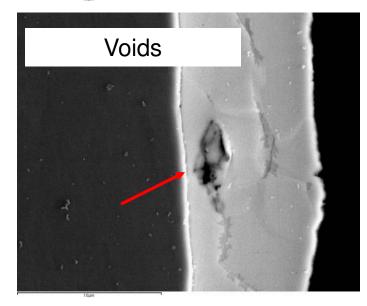

Sn plating thickness varies from 2 to 25 μm depending on

lead area

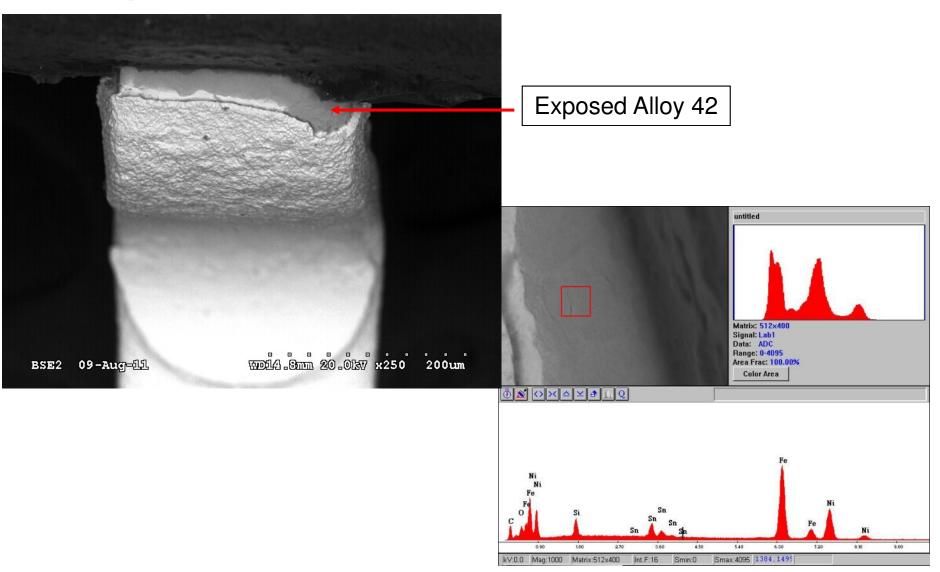




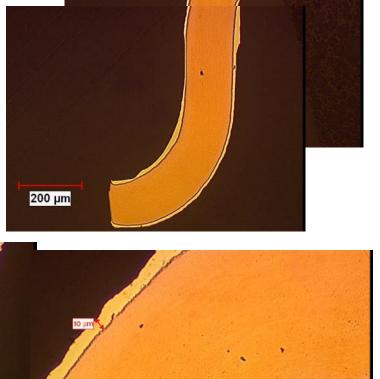



Components, SOT363 as received (cont.) ** SIVITA**

No significant anomalies in plating



Components, SOT363 as received (cont)



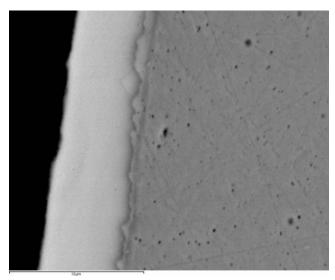
Components, SOT23-5 as received

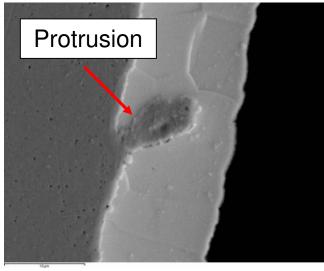
 Sn plating thickness varies from 5 to 29 μm depending on lead area

60 µm

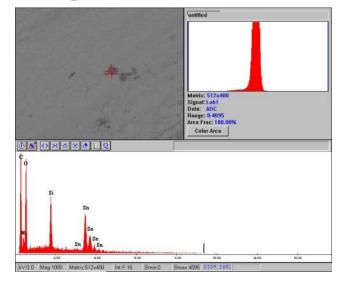

60 µm

60 µm

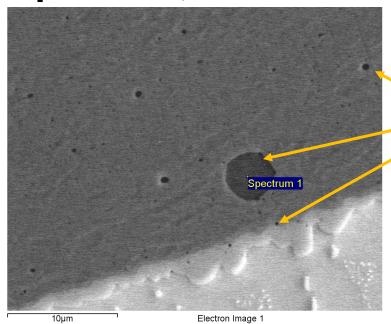

Components, SOT23-5 as received

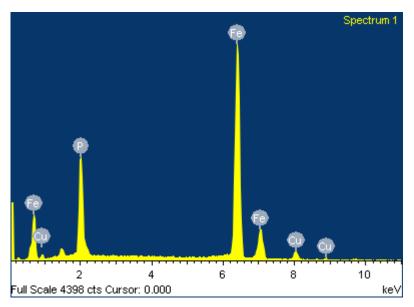

Skipped Sn plating

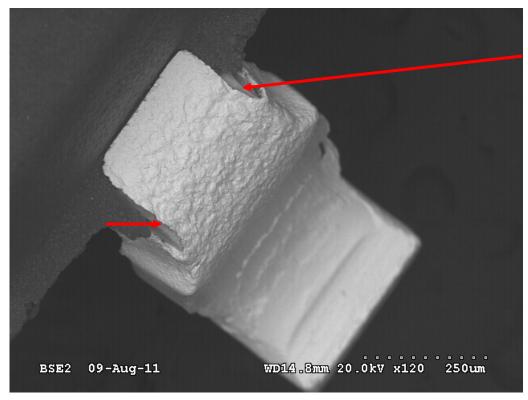




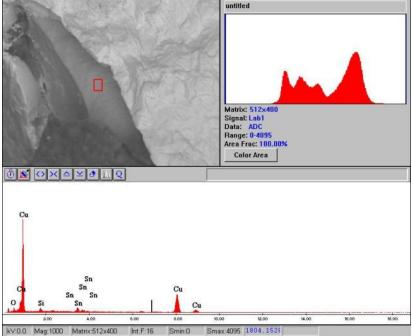
- Sn plating is more uniform and smother than on SOT23-3 and SOT363
- Defects the Intermetallic layer related to Fe₃P







Element	Weight%	Atomic%
PK	13.26	21.74
Fe K	81.00	73.67
Cu K	5.74	4.59
Totals	100.00	


Fe₃P

Components, SOT23-5 as received

Exposed Cu Alloy C194

Components For Assembly

- Before Assembly components were divided into 2 groups
 - The first group was cleaned
 - Method developed in Screening Experiments was used
 - The second croup was contaminated with NaCl
 - Method developed in Screening Experiments was used
 - 3μg/in² intended
- Each group was assembled using SAC305 solder paste and washed after assembly
- Assembled boards were divided into two groups
 - The first group was left clean
 - Cleaned Components/Clean Boards 0-0
 - Contaminated Components/ Clean Boards 1-0
 - The second group was contaminated with NaCl
 - 10μg/in² intended
 - Cleaned Components/Contaminated Boards 0-1
 - Contaminated Components/ Contaminated Boards 1-1

COMPONENTS, CLEANED

Components Before Cleaning

Component Name	Component ID	Total Inorganic anions (μg/in²)	Total Organic anions (μg/in²)
SOT 23-3	2N7002(3 leads)	0.4	3.3
SOT 23-5	NC 7S 08 M5X (5 leads)	0.3	0.0
SOT 363	2N7002DW(6 leads)	0.2	3.5
QFP 64	LQFP 64	0.4	3.1
QFP 44	QFP 44	0.2	2.4
PLCC 20	PLCC 20	3.7	0.0

Components After Cleaning

- Cleaning:
 - The samples were cleaned twice
 - Placed in a KPak® bag with a solution of 10% IPA / 90% v/v deionized water and sealed.
 - 40 minutes in steam bath at 80° C and
 - 40 minutes on shaker table and then
 - Baked at 60° C for 10 minutes.

	Concentration of Inorganic anions in μg/in ²						
Component	Fluoride	Chloride	Nitrite	Bromide	Nitrate	Sulphate	Total inorganic
SOT 23-3	0.0	0.0	0.0	0.0	0.2	0.2	0.4
SOT 23-5	0.1	0.0	0.0	0.0	0.1	0.0	0.3
SOT 363	0.1	0.0	0.0	0.0	0.1	0.0	0.2
QFP 64	0.1	0.0	0.0	0.0	0.2	0.1	0.4
QFP 44	0.1	0.0	0.0	0.0	0.1	0.0	0.2
PLCC 20	0.2	0.2	0.0	0.0	0.1	3.1	3.7

The level of contamination is much below the recommended minimum

Cleanliness Requirements

Terry Manson: Foresite table

TEST PROCEDURE – ION CHROMATOGRAPHY (IPC-TM-650, METHOD2.3.28)

Foresite Recommended Levels for Typical Ionic Residue Species All values are in µg/in²						
Ionic Species	Bare Board	Component	No-clean Assembly	Cleaned Assembly		
Anion	Species alway	s tested for (Bas	sed on NIST Cor	ntrois)		
Fluoride (F)	NA	NA	NA NA	NA		
Acetate (C ₂ H ₂ O ₂)	3.0	3.0	3.0	3.0		
Formate (CH ₂ O ₂)	3.0	3.0	3.0	3.0		
Chloride (CI -)	2.0	1.0	3.0	6.0		
Nitrite (NO ₂ ⁻)	3.0	3.0	3.0	3.0		
Bromide (Br ~)	6.0	6.0	12.0	12.0		
Nitrate (NO ₃ -)	3.0	3.0	3.0	3.0		
Phosphate (PO ₄ ²⁻)	3.0	3.0	3.0	3.0		
Sulfate (SO ₄ ²⁻)	3.0	3.0	3.0	3.0		
WOA (Weak Organic Acid)	NA	NA	SMT 25 Wave 150	25		
Cation	Species alway	s tested for (Bas	sed on NIST Cor	ntrols)		
Lithium (Li)	3.0	3.0	3.0	3.0		
Sodium (Na)	3.0	1.0	3.0	3.0		
Ammonium (NH ₄)	3.0	3.0	3.0	3.0		
Potassium (K)	3.0	3.0	3.0	3.0		
Magnesium (Mg)	NA	NA	NA	NA NA		
Calcium (Ca)	NA	NA	NA	NA NA		

Industry accepted limit of contamination (our customers' requirements) - $10.75~\mu g/in^2$ total inorganic

COMPONENTS, CONTAMINATED

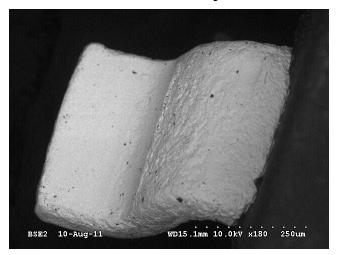
Components After Pre-build Contamination

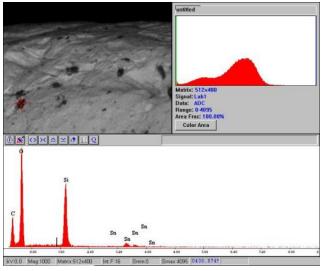
- Intention was to have SOT23-3 level of contamination 3.0μg/in² Cl⁻
- More contamination was trapped by SOT363 and SOT23-5 because of rougher surface and more gaps than in SOT23-3

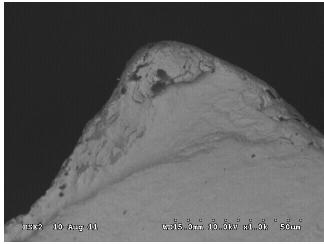
Component Name	Component ID	Total Inorganic anions (μg/in²)	Total Organic anions (μg/in²)
SOT 23-3	2N7002(3 leads)	1.9	0.0
SOT 23-3 repeat	2N7002(3 leads)	2.3	0.0
SOT 23-5	NC 7S 08 M5X (5 leads)	8.7	0.0
SOT 363	2N7002DW(6 leads)	7.4	0.0
QFP 64	LQFP 64	7.9	0.0
PLCC 20	PLCC 20	25	0.0

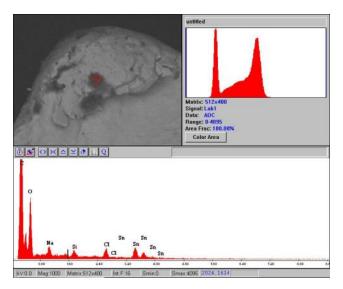
Components After Pre-build Contamination (cont.)

	Concentration of Inorganic anions in μg/in ²						
Component	Fluoride	Chloride	Nitrite	Bromide	Nitrate	Sulphate	Total inorganic
SOT 23-3	0.1	1.7	0.0	1.0	0.0	0.1	1.9
SOT 23-3 repeat	0.1	2.2	0.0	0.0	0.0	0.0	2.3
SOT 23-5	0.3	6.7	0.0	0.0	0.0	0.7	8.7
SOT 363	0.1	7.2	0.0	0.0	0.1	0.1	7.4
QFP 64	0.1	7.7	0.0	0.0	0.0	0.1	7.9
PLCC 20	0.1	24.7	0.0	0.1	0.0	0.1	25.0

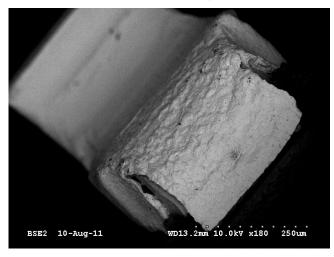

The level of contamination is above the recommended minimum Chloride content:

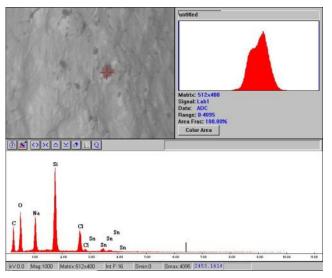

SOT23-3 – 2X above recommendation, but 2X below the level previously encountered in production

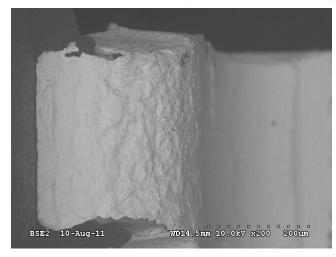

SOT23-5, SOT363, and QFP624 – comparable to what may happen in production PLCC20 – very high level

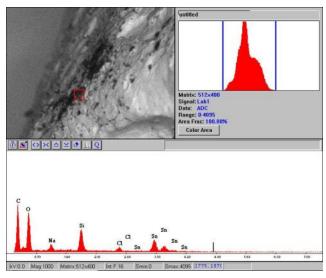

Components Pre-build Contamination: SOT23-3, Cl⁻ - 1.7-2.2µg/in²

- Mostly silicon containing contamination was detected
- Chloride was found only in several occasions

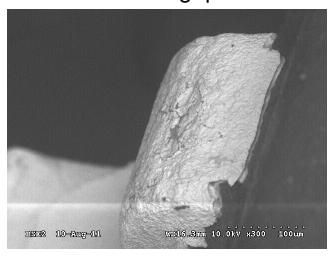


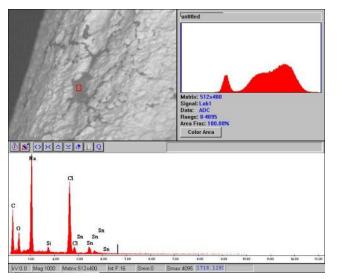


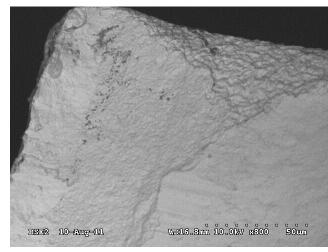


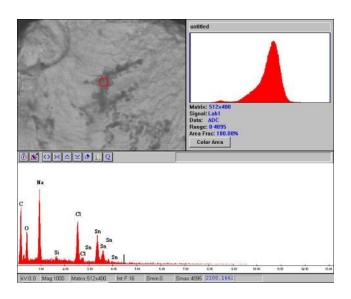

Components Pre-build Contamination: SOT23-5, Cl⁻ - 6.7µg/in²

Chloride containing contamination in surface roughness and gaps

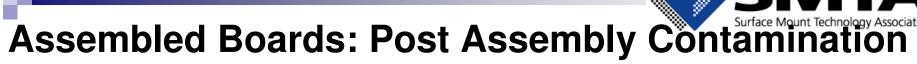






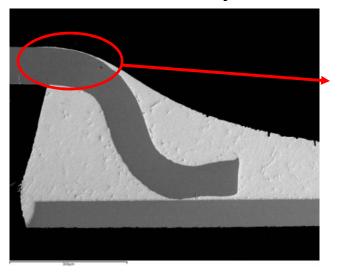

Components Pre-build Contamination: Surface Mount Technology SOT363, CI⁻ - 7.2µg/in² Chloride containing contamination are widely spread in surface roughness,

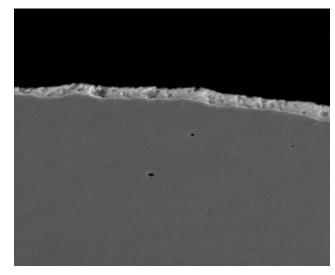
 Chloride containing contamination are widely spread in surface roughness, grain boundaries and gaps

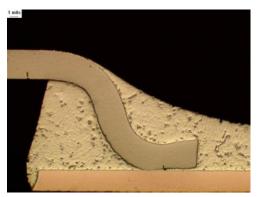

ASSEMBLY

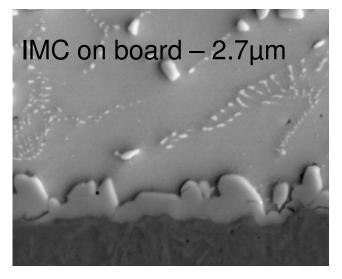
Assembled Boards

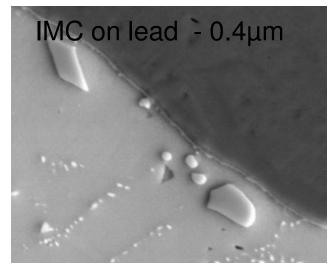
- Cleaned and Contaminated components were assembled using SAC305 solder paste and washed after assembly
- Assembled boards were divided into two groups
 - The first group was left clean
 - Cleaned Components/Clean Boards 0-0 no conformal coating
 - Contaminated Components/ Clean Boards 1-0 no conformal coating
 - The second group was coated using UV40
 - Cleaned Components/Clean Boards 0-0 with conformal coating
 - Contaminated Components/ Clean Boards 1-0 with conformal coating
 - Each of four types of SOT boards was divided into two groups
 - The first group is left clean
 - The second group was contaminated with NaCl
 - 10μg/in² intended
 - Cleaned Components/Contaminated Boards 0-1
 - Contaminated Components/ Contaminated Boards 1-1
- Eight types of SOT boards were recieved:
 - 0-0, 1-0, 0-1, 1-1 no conformal coating
 - 0-0, 1-0, 0-1, 1-1 with conformal coating

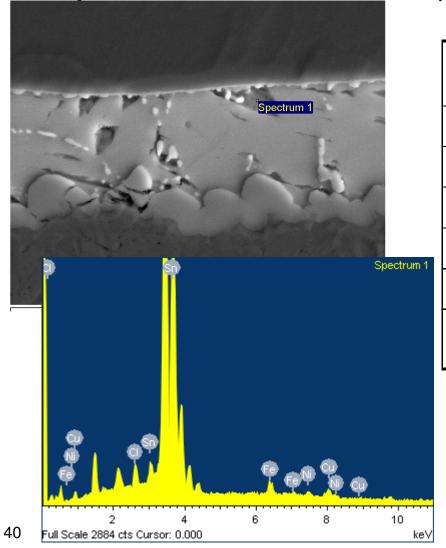

- Two solutions for post assembly contamination:
 - 250 +/- 10 ppm for
 - SOT boards with conformal coating
 - 160 +/- 10 ppm for
 - SOT boards no conformal coating
 - QFP boards without conformal coating
 - QFP boards with conformal coating
- Ion Chromatography results (IC)
- Chloride in ppm about 5 ppm
- Chloride in μg/in² 9.6 to 12.8 μg/in²


Sample ID	IC – Chloride, ppm	Chloride Conc. μg/in²)
Board 237 - SOT - not coated	5.2	12.5
Board 217 – SOT - coated	5.3	12.8
Board 219 - SOT - coated	4.0	9.6

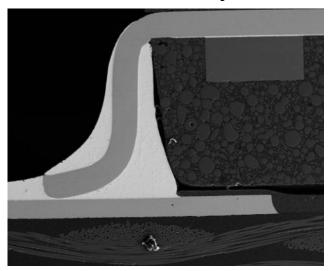


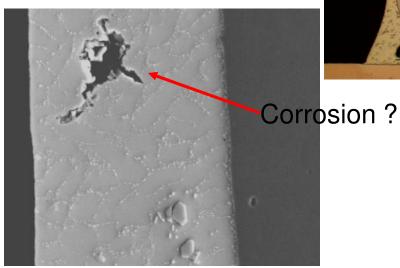

Solder Coverage:SOT23-3

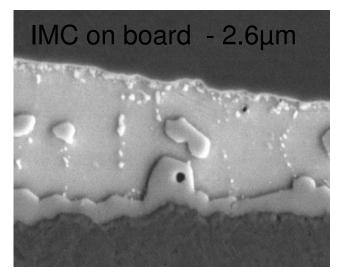

SOT23-3 is fully covered with solder

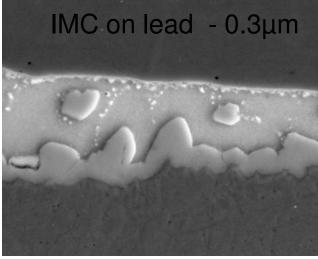


Solder Coverage: SOT23-3

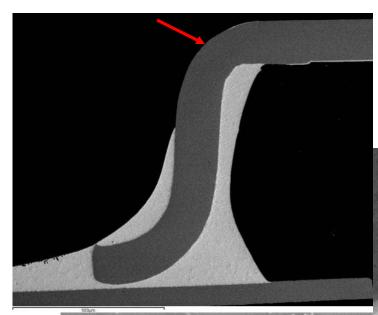

Some CI was found trapped at the thinnest part of the joint between the lead and Cu pad

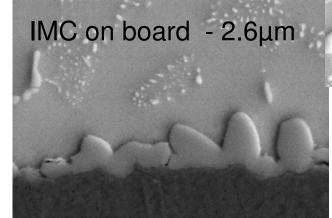



Element	Weight%	Atomic%
CI K	1.21	3.78
Fe K	2.07	4.08
Ni K	0.95	1.78
Cu K	1.59	2.77
Sn L	94.18	87.59
Totals	100.00	


Solder Coverage: SOT363

SOT363 is fully covered with solder





Solder Coverage: SOT23-5

 The top part of the leads of SOT23-5 is not covered with solder

IMC on lead - 1.1µm